
Crazy Secure Protection for
Android Monero Wallets

m2049r

March 19, 2018

Abstract

In general, small mobile devices provide cumbersome input
methods as well as limited screen resources. This leads users to
create weak passwords & passphrases to secure even the most
sensitive of information. This white paper presents a solution for
securing Monero wallets on Android devices regardless of where
the files are stored. The procedure involves the user being
encouraged to enter a strong passphrase whose RSA signature is
hashed with the CryptoNight algorithm to produce a 256-bit
key which can be used as the real wallet passphrase. This
procedure ensures that even weak passphrases generate strong
256-bit based passphrases.

1

1 Introduction

In general, small mobile devices provide cumbersome input
methods as well as limited screen resources. This leads users to
create weak passwords & passphrases or even simple PIN-codes
to secure even the most sensitive of information.

One possibility of resolving this problem is by educating the
user about security and passphrase selection through help
dialogs or popups. This can be enhanced further through the
use of nagging messages during passphrase creation by
quantifying the strength of the entered text and displaying this
info either in text form or as a progress bar. A more drastic
approach is to enforce certain rules on password selection.

The efficacy of passphrase rules is controversial and a
negative user experience. The constraints of small mobile
devices also need to be considered in this regard, where often
changing from letters to digits or special characters is tedious
and the space provided on the screen for the passphrase is
limited.

In the “mobile wallet scenario” a passphrase is used to secure
the private keys of the user. These are stored in an encrypted
file on the device. It is often proposed to store this file in
internal file storage because only the app can access its files in
this storage area. The reasoning behind this approach is that no
other (potentially malicious) app can access this area and thus
the files are safe. A weak password is good enough as the files
cannot be accessed. Although this is a better approach than
storing wallet files in external file storage where any other app
can access the files, as soon as the wallet files are exported (for
example to create backups, migrate to new device, etc.) and so
released into the wild, they are prone to the usual attack
vectors. A malicious app just needs to wait for this to happen.
An often overlooked attack vector is that the app itself can be
easily modified and so has access to all data the original app has
access to, including wallet files.

We propose a slightly different approach.

2

1.1 Assumptions & Attack vectors

This paper is based on the implementation of Monerujo – a
Monero wallet for Android.

We can only control what we can control. Installed trojans
like Svpeng pose attack vectors we are not aiming to resolve. It
grants itself device administrator rights and can log keystrokes
by use of the Accessibility Services. If the password screen is
protected against screenshots, it also displays a screen overlay
which looks like original screen and logs entered passwords even
if the app does not use standard keyboard entry. This we cannot
control.

What we want to control is the strength of the passphrase
used for the encrypted wallet files, so that these can be “shared
freely” (be it on or off the device) without fear of being opened
by a third party. We want to mitigate attackers stealing mobile
wallets and guessing the encryption keys. As we don’t think
that stealing of files from an Android device can be effectively
mitigated, we are concentrating on producing strong encryption
keys.

For our solution we use RSA encryption by way of the
Android Keystore System which protects key material from
unauthorized use. In particular it mitigates unauthorized use of
key material outside of the Android device by preventing
extraction of the key material from application processes and
from the Android device as a whole. This system is more secure
than the aforementioned internal file storage because even the
app itself cannot retrieve the encryption keys. In addition, the
key material never enters the application process. When an
application performs cryptographic operations, the data is fed
to a system process which carries out the cryptographic
operations. If the app’s process is compromised, the attacker
may be able to use the app’s keys but will not be able to
extract their key material (for example, to be used outside of
the Android device). Key material may be bound to the secure
hardware (for example, Trusted Execution Environment (TEE),

3

Secure Element (SE)) if supported by the Android device
hardware. When this feature is enabled for a key, its key
material is never exposed outside of the secure hardware.

In the case that an attacker gets access to the key files, we
also want a bruteforce attack on the keys to be costly and slow.
Our approach thus also requires a slow hashing function. As we
are working in the Monero-Space, we have selected the Monero
KDF (CryptoNight) to be used as this slow hashing function.

2 Materials & Methods

We propose passphrase generation for the wallet files be done
in 5 steps, the first of which need only be executed once per app
installation:

0. Generate a 2048-bit RSA keypair for PKCS#1 signing
operations only in the Android Keystore System and reuse it for
all wallets.

1. The user is asked to enter a strong password. The
password strength is measured during entry and displayed in
the form of nag-messages until a certain strength is reached.
The passphrase assessment is done by the zxcvbn algorithm. A
passphrase is deemed as secure enough if the algorithm
estimates that more than 1013 guesses are required to crack it.

2. Sign the user-passphrase (using UTF-8 decoding to cater
for different languages and character sets) with the secret RSA
key through the Android Keystore System.

3. Hash the resulting signature (256 bytes) with the Monero-
inherent CryptoNight algorithm to produce a 256-bit key.

4. Convert the 256-bit key into a mnemonic the user can
write down for further use using the Monero mnemonic-
derivation algorithm.

3 Results & Discussion

What we are effectively doing is creating a crazy secure
passphrase for the user.

4

We are using the RSA signature as “salt” for the user-
passphrase. We could also simply generate a 32-bit random salt
which we can store in the app’s shared preferences which we
prepend to the user-passphrase before CryptoNight hashing.
But the shared preferences could be targeted by an attacker
with relatively little effort. In that case, we could encrypt the
salt with our RSA keys (which are safely stored by the Android
Keystore System) and store the encrypted salt in the shared
preferences and decode it when we need it. Although this seems
to be a popular approach, an attacker who manages to hack the
app can easily decode the salt and use it to bruteforce the
wallet passphrase off-device. Our approach forces the attacker to
bruteforce on-device in such a scenario – if they do not manage
to get access to the secure Android Keystore System. This is
the reason we have opted for using the RSA signature as salt.

3.1 Implications for attackers

If an attacker steals the wallet files only, they would have to
guess a 256-bit passphrase. This is as secure as the Monero seed
itself.

An attacker may manage to not only steal the wallet files but
also to compromise the app. As the RSA key material is
securely held by the Android System, any bruteforce attack on
the user-passphrase would have to be done on the device itself
as the cryptographic operations can only be performed on the
device by the app itself. A Galaxy S4 Active (ARM32 processor
@ 1.9GHz) generates our crazy secure passphrases at a rate of
only 3 per second.

If the attacker manages to steal everything from the device,
including the RSA key material, they will be able to perform a
bruteforce attack on dedicated hardware. If the user honoured
the suggestions during user-passphrase creation in step 1, their
passphrase would require more than 1013 guesses to crack. It
should be considered that the key material may be on dedicated

5

hardware if the Android device provides it and so this attack is
avoided altogether (within limits).

3.2 Variations

RSA was chosen because Monerujo support pre API 23
devices and those only allow RSA keys to be used with the
Android Keystore System. On post API 23 many more
cryptographic options exist.

One variation worth noting, is the use of a seperate RSA key
for each wallet. The open question here is if and when to delete
keys which no longer correspond to wallets on the device.

3.3 UX/UI

The user must be made aware of the intricacies of this
approach through cunning UX/UI design. Although we assume,
that the majority of users do not share wallet files among
devices, they should be making backups which they can deploy
on new or factory-reset devices. Thus it is important for them
to store the 25-word passphrase generated by the proposed
approach alongside their mnemonic seed. It is important for the
user to understand the difference between the two. It may be
wise to reduce the generated wallet password to 13 words
mymonero-style or use some other format which is clearly
different from the Monero mnemonic seed.

Exporting of wallets should be accompanied by a message
providing information about where to find the actual passphrase
of the wallet. A similar message needs to be presented on wallet
creation and on change of passphrase operations.

Importing of wallets with a crazy secure 25 word passphrase
should offer the user the possibility to regenerate a new
passphrase according to the methodology proposed. This would,
as a consequence, also change the real passphrase of the wallet.

To cater for old-style wallet passphrases, the entered
passphrase needs to be checked against the wallet file directly,

6

and if this fails, go through the described procedure to derive
the secure password.

Old-style passphrases can be converted to crazy secure
passphrases easily. The question is, if a user should do this as
the wallet may already be compromised. If this is a possibility,
it is certainly better practice to create a new wallet and transfer
all funds.

On uninstallation of the app, the keystore is wiped together
with the internal file storage. The user should be made aware of
this before this happens, as there is no possibility for the app to
react when it does.

4 Acknowledgments

We are particularly grateful for the feedback from the folks
at #monero-research-lab especially hyc, luigi1111w,
moneromoo, sarang and suraeNoether.

5 Bibliography

zxcvbn: Low-Budget Password Strength Estimation,
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/wheeler
Java port of zxcvbn, https://github.com/nulab/zxcvbn4j
Android Keystore System,
https://developer.android.com/training/articles/keystore.html
Dangerous Mobile Banking Trojan Gets 'Keylogger' to Steal
Everything, https://thehackernews.com/2017/07/android-
banking-malware.html
TrustZone Downgrade Attack Opens Android Devices to Old
Vulnerabilities,
https://www.bleepingcomputer.com/news/security/trustzone-
downgrade-attack-opens-android-devices-to-old-vulnerabilities/
Android SoC security keys extracted: Qualcomm TrustZone in
question, https://www.slashgear.com/android-soc-security-keys-
extracted-qualcomm-trustzone-in-question-31442245/

7

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/wheeler
https://www.slashgear.com/android-soc-security-keys-extracted-qualcomm-trustzone-in-question-31442245/
https://www.slashgear.com/android-soc-security-keys-extracted-qualcomm-trustzone-in-question-31442245/
https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://thehackernews.com/2017/07/android-banking-malware.html
https://thehackernews.com/2017/07/android-banking-malware.html
https://developer.android.com/training/articles/keystore.html

	1 Introduction
	1.1 Assumptions & Attack vectors

	2 Materials & Methods
	3 Results & Discussion
	3.1 Implications for attackers
	3.2 Variations
	3.3 UX/UI

	4 Acknowledgments
	5 Bibliography

